

ARZNEIMITTELWIRKSTOFFE IM ZU- UND ABLAUF VON KLÄRANLAGEN

ARZNEIMITTELWIRKSTOFFE IM ZU- UND ABLAUF VON KLÄRANLAGEN

Sigrid Scharf, Oliver Gans, Robert Sattelberger

BE-201

Wien, Jänner 2002

Projektleitung

Sigrid Scharf

Autoren

Sigrid Scharf
Oliver Gans
Robert Sattelberger
unter Mitarbeit von Gundi Lorbeer

Layout

Evelyn Neuhold

Sämtliche Analysen wurden in den Labors der Umweltbundesamt GmbH durchgeführt. Besonderer Dank gebührt den Kläranlagenbetreibern für die gute Zusammenarbeit.

Weitere Informationen zu Publikationen des Umweltbundesamtes finden Sie unter: http://www.ubavie.gv.at

Impressum

Medieninhaber und Herausgeber: Umweltbundesamt GmbH, Spittelauer Lände 5, A-1090 Wien Eigenvervielfältigung

© Umweltbundesamt GmbH, Wien, Jänner 2002 Alle Rechte vorbehalten (all rights reserved) ISBN 3-85457-624-2

INHALTSVERZEICHNIS

	ZUSAMMENFASSUNG	1
1.	EINLEITUNG	2
2. 2.1	AUSWAHL UND BESCHREIBUNG DER LEITSUBSTANZEN Auswahl der Leitsubstanzen	
2.2	Beschreibung der Leitsubstanzen	3
3.	AUSWAHL DER PROBENAHMESTELLEN UND BESCHREIBUNG DER PROBENAHMEN	9
3.1	Probenahme	9
3.2	Weitere Bearbeitung der Abwasserproben	9
4.	UNTERSUCHUNGSUMFANG	. 10
4.1	Analyse der Clofibrinsäure, Naproxen, Diclofenac, Fenofibrat und Bezafibrat mittels GC/MS	. 10
4.2	Analyse ausgewählter Arzneimittelwirkstoffe mittels LC/MS/MS	. 10
4.2.1	Saure Probenvorbereitung und Analyse von Sulfamethoxazol, Carbamazepin, Ibuprofen, Phenazon, Coffein	
4.2.2	Neutrale Probenvorbereitung und Analyse von Carbamazepin, Coffein, Ibuprofen, Trimethoprim, Phenazon, Penicillin V, Penicillin G, Verapamil, Erythromycin	. 10
5.	UNTERSUCHUNGSERGEBNISSE	. 11
6.	ERGEBNISSE	. 13
7.	LITERATUR	. 22
8.	VERZEICHNISSE	. 23
8.1	Abkürzungsverzeichnis	23
8.2	Tabellen-/Abbildungsverzeichnis	. 23
	ANHANG 1 / Kläranlagenbezogene Kenndaten	. 24

ZUSAMMENFASSUNG

Schwerpunkt der gegenständlichen Untersuchung ist die Fragestellung, in welchen Konzentrationen Arzneimittelwirkstoffe, die vorwiegend in der Humanmedizin eingesetzt werden, im Zu- und Ablauf österreichischer Kläranlagen vorkommen.

Arzneimittelwirkstoffe gelangen vorwiegend über Urin und Faeces in das kommunale Abwasser. Werden diese Wirkstoffe in Kläranlagen nicht oder nur unzureichend entfernt, kann dies zu Belastungen der als Vorfluter genutzten Gewässer führen.

Erstmals wurden Zu- und Abläufe von 11 kommunalen österreichischen Kläranlagen sowie einer industriellen Kläranlage auf ausgewählte Arzneimittelwirkstoffe untersucht. Die beprobten kommunalen Abwässer wiesen einen Industrieanteil zwischen 50 und 70 % auf. Die mengenproportionalen Tagesmischproben (24 Stunden) wurden mittels LC/MS/MS und GC/MS analysiert.

Untersucht wurden die Abwasserproben auf die Arzneimittelwirkstoffe, Bezafibrat (Lipidsenker), Diclofenac (Analgetikum), Fenofibrat (Lipidsenker), Ibuprofen (Analgetikum), Naproxen (Analgetikum), Phenazon (Analgetikum), Phenoxymethylpenicillin (Penicillin V, Antibiotikum), und Verapamil (Anthypertonikum), welche in Österreich ausschließlich in Arzneimitteln enthalten und für die humanmedizinische Anwendung zugelassen sind. Benzylpenicillin (Penicillin G, Antibiotikum), Erythromycin (Antibiotikum), Sulfamethoxazol (Antibiotikum) und Trimethoprim (Antibiotikum), die auch in der Veterinärmedizin eingesetzt werden, waren ebenfalls Bestandteil des Analysenprogamms. Ebenso der Metabolit des Clofibrats und Etofibrats (Lipidsenker), die Clofibrinsäure und das Psychostimulans Coffein.

Coffein, ein anthropogen bedingter, ubiquitärer Kontaminant von Oberflächengewässern, wird in Kläranlagen weitgehend abgebaut bzw. eliminiert. Dies konnte auch in dieser Untersuchung bestätigt werden. In den Zuläufen betrug der Median (n=11; die Mediane und Mittelwerte wurden nur von den 11 kommunalen Kläranlagen berechnet) der Coffeinkonzentration 38,6 µg/L, im Ablaufwasser war nur ein Median von 0,70 µg/L feststellbar. Dennoch wurden bei Coffein im Ablaufwasser der untersuchten Kläranlagen von allen untersuchten Wirkstoffen die höchsten Spitzenwerte nachgewiesen. Hohe Gehalte wiesen auch der Lipidsenker Bezafibrat (Median: 0,91 µg/l), das Antiepileptikum Carbamazepin (Median: 0,56 µg/L), das Analgetikum Naproxen (Median: 0,49 µg/L) und das Antibiotikum Erythromycin (Median: 0,39 µg/L) auf.

Die vorliegende Untersuchung zeigt somit auf, dass auch in Österreich das Abwasser von Kläranlagen mit Rückständen von Arzneimittelwirkstoffen belastet sein kann. Im Abwasser der kommunalen Kläranlagenabläufe (n = 11) waren die Substanzen Bezafibrat, Carbamazepin, Coffein, Diclofenac, Erythromycin, Ibuprofen, Naproxen, Phenazon und Trimethoprim regelmäßig nachweisbar (Proben > Bestimmungsgrenze (BG) 10/11 bzw. 11/11). Sulfamethoxazol und Clofibrinsäure wurden in 6 von 11 Ablaufwasserproben > BG gefunden, während Verapamil (Proben > BG 2/11) nur vereinzelt detektiert werden konnte.

Fenofibrat war nur in sehr geringen Konzentrationen nachweisbar (Max.-Ablauf: $0,05~\mu g/L$). Penicillin V und G konnten weder im Zu- noch im Ablaufwasser der Kläranlagen detektiert werden.

Da den Kläranlagenbetreibern Wahrung der Anonymität zugesichert wurde, sind die Kläranlagen codiert. Die Reihung im Bericht erfolgt chronologisch, geordnet nach dem Zeitpunkt der Probenahme. Im Anhang finden sich kläranlagenbezogene Kenndaten.

1. EINLEITUNG

Arzneimittel werden in großen Mengen in der Human- und Veterinärmedizin eingesetzt. Nach Applikation werden diese Stoffe mit dem Urin und dem Kot ausgeschieden und gelangen so in die Umwelt.

Mit Stand Jänner 2001 waren in Österreich insgesamt 11.701 Arzneispezialitäten, mit etwa 1.800 Einzelwirkstoffen zugelassen. Die Zahl der zugelassenen Veterinärpräparate betrug zu diesem Zeitpunkt 1.082 (ÖSTERREICHISCHE APOTHEKER-KAMMER, 2001).

Das Umweltbundesamt hat im Rahmen eines Umweltkontrollprojektes die Zu- und Abläufe von im Bundesgebiet ausgewählten kommunalen und industriellen Kläranlagen auf ihre Belastung mit ausgesuchten Arzneimittelwirkstoffen untersucht.

Der Schwerpunkt dieser Untersuchung lag auf Arzneimittelwirkstoffe, die vorwiegend in der Humanmedizin eingesetzt werden. Es handelt sich vor allem um Wirkstoffe in Antibiotika, Schmerz- Migräne und Rheumamittel, Mitteln zur Behandlung von Fettstoffwechselstörungen - zur Senkung erhöhter Cholesterin- und Triglyceridspiegel - und Arzneimitteln zur Behandlung des Bluthochdrucks.

In dem nun vorliegenden Datenbericht sind die Ergebnisse der Untersuchungen österreichischer Kläranlagen auf ausgewählte Arzneimittelwirkstoffe zusammengefasst und tabellarisch dargestellt.

2. AUSWAHL UND BESCHREIBUNG DER LEITSUBSTANZEN

2.1 Auswahl der Leitsubstanzen

Die Auswahl der Leitsubstanzen erfolgte aufgrund von Literaturrecherchen, den österreichspezifischen Mengenangaben von Arzneimittelwirkstoffen in der Humanmedizin (Sonderstudie IMS) und Vorarbeiten des Umweltbundesamtes.

Eine zusammenfassende Darstellung der Problematik ist der Publikation von DAUGHTON & TERNES (1999) "Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change" zu entnehmen.

Publizierte Vorarbeiten des Umweltbundesamtes zu diesem Themenbereich sind:

UBA-Report-162 (1999): Arzneimittelrückstände in der Umwelt

UBA-Monografie 121 (2000): Abwasser- und Klärschlammuntersuchungen in der Pilotkläranlage Entsorgungsbetriebe Simmering (EbS).

2.2 Beschreibung der Leitsubstanzen

Die angegebenen Daten über den Verbrauch von Arzneimittelwirkstoffen in Österreich stammen aus einer Sonderstudie des IMS-Wien (Institut für medizinische Statistik) im Auftrag des Umweltbundesamtes. Die Angaben, aus dem Jahr 1997, beziehen sich nur auf den Wirkstoffverbrauch im Bereich der Humanmedizin (IMS 1998; SATTELBERGER 1999).

Analgetika (Diclofenac, Ibuprofen, Naproxen, Phenazon)

Analgetika gehören zu den am meisten eingesetzten Arzneimitteln in der Humanmedizin. Ihr Wirkungsspektrum umfasst analgetische, antipyretische und antiphlogistische Wirkungskomponenten. Ihr Haupt-Wirkungsmechanismus beruht auf einer Blockade der Synthese von Prostaglandinen, hormonähnlichen Substanzen, die wesentlich an Schmerz, Fieber und entzündlichen Reaktionen beteiligt sind. In Österreich wurden im Jahr 1997 insgesamt 163.373 kg Analgetikawirkstoffe verbraucht.

Diclofenac (Verbrauch: 6.143 kg) ist ein klassisches, häufig eingesetztes Antirheumatikum. Diese nichtsteroidale Wirksubstanz mit antirheumatischer, antiphlogistischer, analgetischer sowie antipyretischer Eigenschaft, wirkt vorwiegend durch Hemmung der Prostaglandinsynthese. Etwa 60% der applizierten Dosis werden im Urin ausgeschieden und zwar in Form von Glucuronsäurekonjugaten. Weniger als 1% wird in unveränderter Form ausgeschieden. Der Rest der verabreichten Dosis wird in Form von Metaboliten über die Galle in den Faeces eliminiert (AUSTRIA-CODEX FACHINFORMATION, 2001).

Ibuprofen (Verbrauch 6.696 kg) ist ein Analgetikum mit ausgeprägter analgetischer, antiphlogistischer und antipyretischer Wirkung. Der Wirkstoff ist neuerdings auch in vielen rezeptfreien "Schmerzmitteln" enthalten.

Naproxen (Verbrauch 4.631 kg), ebenfalls ein nichtsteroidales Antirheumatikum aus der Gruppe der Propionsäurederivate, wirkt antiphlogistisch, analgetisch und antipyretisch.

Phenazon (Verbrauch: 12.768 kg) ist ein nichtsteroidaler Entzündungshemmer aus der Gruppe der Pyrazolone. Es ist das älteste synthetische, schwache Analgetikum und besitzt außer analgetischer, antipyretischer und antiphlogistischer Eigenschaften auch noch eine spasmolytische Wirkung an glattmuskulären Organen.

Lipidsenker (Clofibrat, Bezafibrat, Fenofibrat)

Ein erhöhter Lipidblutspiegel gilt neben Rauchen und Hypertonie als wichtiger Risikofaktor bei der Entstehung der Arteriosklerose. Führen diätetische und andere Maßnahmen zu keiner ausreichenden Normalisierung des Lipidblutspiegels werden zusätzlich lipidsenkende Medikamente eingesetzt. Der Verbrauch an Lipidsenkerwirkstoffen in Österreich betrug im Jahr 1997 etwa 11.000 kg (SATTELBERGER, 1999).

Der Lipidsenker Clofibrat ist allerdings in Österreich nicht mehr in Verwendung. Die Clofibrinsäure, der Hauptmetabolit von Clofibrat und Etofibrat, ist ein Stereoisomer des Herbizidwirkstoffes MCPP (Mecoprop). MCPP wird im Getreidebau gegen zweikeimblättrige Samenunkräuter eingesetzt.

Die Clofibrat-Analoga Bezafibrat (Verbrauch 4.474 kg) und Fenofibrat (Verbrauch: 1.160 kg) haben ein verbessertes Wirkspektrum im Vergleich zu Clofibrat. Bezafibrat wird vorwiegend über die Nieren, zum Großteil unverändert (50%) und zu geringen Teilen als Bezafibratglucuronid (20%) bzw. in Metabolitenform (Hydroxy-Bezafibrat) ausgeschieden. Fenofibrat wird ebenfalls vorwiegend renal eliminiert (AUSTRIA-CODEX FACHINFORMATION, 2001).

Psychostimulans (Coffein)

In den üblich applizierten Dosen von 50 bis 200 mg wirkt Coffein anregend auf Großhirnrinde, Atem- und Kreislaufzentrum und fördert die Herzleistung (MUTSCHLER & SCHÄFER-KORTING, 1997). Durch das psychostimulierende Wirkungsspektrum werden Ermüdungserscheinungen aufgehoben und die psychische und physische Leistungsbereitschaft und Leistungsfähigkeit verbessert. Das Xanthinderivat Coffein ist in Schmerzmitteln, in Kaffee, Tee (50 bis 180 mg/Tasse) und vielen Erfrischungsgetränken (bis 150 mg/l) enthalten. Das Coffein wird fast vollständig metabolisiert und überwiegend renal ausgeschieden.

Es wird vermutet, dass Coffein von ökotoxikologischer Relevanz sein könnte (PRÖSCH & PUCHERT, 1998).

Antiepileptikum (Carbamazepin)

Das Antiepileptikum Carbamazepin (Verbrauch: 6.334 kg), ein Dibenzazepin-Derivat, ist das Basistherapeutikum bei Epilepsieerkrankungen. Nur 1 bis 3% des Carbamazepins werden unverändert im Harn ausgeschieden. Eigentliche Wirksubstanz ist das Carbamazepin-10,11-epoxid, das zum inaktiven trans-Diol-Derivat, Hauptmetabolit beim Menschen, umgewandelt wird. Weitere Umwandlungsprodukte sind monohydroxylierte Verbindungen und N-Glukuronide des Carbamazepins.

Antihypertonikum (Verapamil)

Verapamil (Verbrauch: 381 kg) ist ein Antihypertonikum und gehört zu den Kalziumantagonisten (Kalziumkanalblockern). Verapamil wird zum größten Teil im menschlichen Organismus metabolisiert und vorwiegend renal ausgeschieden.

Antibiotika (Penicillin V, Penicillin G, Sulfamethoxazol, Erythromycin und Trimethoprim)

Antibiotika sind Substanzen, die zur Chemotherapie von Infektionskrankheiten eingesetzt werden. Antibiotika im engeren Sinne umfassen eigentlich nur die Stoffwechselprodukte von Mikroorganismen (Schimmelpilze, Bakterien) biologischen Ursprungs mit hemmender oder abtötender Wirkung auf andere Mikroorganismen.

Penicillin V (Phenoxymethylpenicillin; Verbrauch: 9.071 kg) und Penicillin G (Benzylpenicillin; Verbrauch: 1.339 kg) gehören zu den ß-Lactam-Antibiotika. Den ß-Lactam-Antibiotika gemeinsam ist ihre einheitliche Grundstruktur, die durch einen viergliedrigen ß-Lactamring gekennzeichnet ist. Einziger bedeutsamer Vertreter der "natürlichen" Penicilline in der Humanmedizin ist das Penicillin G. Da es bei oraler Gabe nicht stabil ist, muss es parenteral verabreicht werden. Penicillin V war das erste oral wirksame, biosynthetische Penicillin. Der Wirkungstyp der ß-Lactam-Antibiotika ist bakterizid.

Die Sulfonamide, Amide der Sulfanilsäure, sind für Säuger weitgehend untoxisch und gehören zur Gruppe der Folsäureantagonisten. Der Wirkungstyp dieser Substanzen, ist bakteriostatisch. Aufgrund der Zunahme resistenter Erregerstämme ist jedoch die humanmedizinische Anwendung dieser Substanzen rückläufig. Sulfonamide werden meist in Kombination mit dem Synergisten Trimethoprim (Verbrauch: 905 kg) verabreicht. Im gegenständlichen Analysenprogramm war Sulfamethoxazol (Verbrauch: 963 kg) enthalten.

Erythromycin (Verbrauch: 1.131 kg), ein Makrolid-Antibiotikum, wirkt bakteriostatisch und wird sowohl in der Humanmedizin als auch in der Veterinärmedizin eingesetzt.

Nachfolgend die Strukturformeln und CAS-Nummern der einzelnen Arzneimittelwirkstoffe:

Analgetika

Diclofenac (CAS 15307-86-5)

Ibuprofen (CAS 15687-27-1)

Naproxen (CAS 22204-53-1)

Phenazon (CAS 60-80-0)

Lipidsenker

Bezafibrat (CAS 41859-67-0)

Clofibrinsäure (CAS 882-09-7)

Fenofibrat (CAS 49562-28-9)

Psychostimulans (Analeptikum)

Coffein (CAS 58-08-2)

Antiepileptikum

Carbamazepin (CAS 298-46-4)

Antihypertonikum

Verapamil (CAS 52-53-9)

Antibiotika

Penicillin V (CAS 87-08-1)

Penicillin G (CAS 61-33-6)

Erythromycin (CAS 114-07-8)

Trimethoprim (CAS 738-70-5)

Sulfamethoxazol (CAS 723-46-6)

Abbildung 1: Strukturformeln untersuchter Arzneimittelwirkstoffe

3. AUSWAHL DER PROBENAHMESTELLEN UND BESCHREIBUNG DER PROBENAHMEN

3.1 Probenahme

Kommunale Kläranlagenbetreiber und Industriebetriebe mit eigenen Kläranlagen aus ganz Österreich wurden mit der Bitte angeschrieben, an diesem Projekt teilzunehmen. 12 Kläranlagen, davon 1 industrieller Herkunft, erklärten sich bereit, an diesem Projekt teilzunehmen.

Im Zu- und Ablauf der Kläranlagen wurden Tagesproben (24 Stunden) genommen. Die Probenahmen aller im Zu- und Ablauf der Kläranlagen genommenen Tagesproben erfolgten von Februar 1998 bis Mai 1998. Die kommunalen Abwässer wiesen einen Industrieanteil zwischen 50 und 70 % auf, die Zulaufmengen betrugen zwischen 10.000 und 85.000 m³/d. Die untersuchten Kläranlagen sind für mindestens 100.000 Einwohnergleichwerte ausgelegt.

Bei den zur Verfügung stehenden automatischen Probenehmern ist der Kontakt mit Kunststoff nicht vermeidbar (Plastikschläuche, Plastikgefäße). Da u.a. Xenohormone, nämlich auch Phthalate und Nonylphenol zu analysieren waren und bei den zur Verfügung stehenden automatischen Probenehmern der Kontakt mit Kunststoff nicht vermeidbar (Plastikschläuche, Plastikgefäße) ist, erfolgten die Probenahmen manuell mit Metallgefäßen. Bei dieser Art der Probenahme wurden alle 2 Stunden Proben genommen. Das Abwasser wurde anschließend in speziell gereinigte Glasgefäße gefüllt. Die Proben wurden gekühlt in das Labor gebracht und innerhalb von 24 Stunden mit Natriumazid stabilisiert.

3.2 Weitere Bearbeitung der Abwasserproben

Im Labor wurden die händisch genommenen Proben mengenproportional vereinigt, gemischt und filtriert. Die filtrierten Proben wurden ursprünglich auf einige endokrin wirksame Leitsubstanzen analysiert (SCHARF et. al., 1999) bzw. eingefroren. Für die gegenständliche Untersuchung wurden die bei -18°C eingefrorenen Proben im Jahr 2000 aufgetaut und auf ausgewählte Arzneimittelwirkstoffe untersucht.

4. UNTERSUCHUNGSUMFANG

4.1 Analyse der Clofibrinsäure, Naproxen, Diclofenac, Fenofibrat und Bezafibrat mittels GC/MS

- 1) Anreicherung der Analyten mittels Festphasenextraktion (RP-C18) im sauren Milieu nach Zugabe von Meclofenaminsäure als Surrogate
- 2) Elution mit Methanol
- 3) Derivatisierung mit Diazomethan
- 4) Säulenchromatographische Extraktreinigung über Kieselgel
- 5) Lösungsmittelwechsel zu Toluol
- 6) Zugabe eines Injektionsstandards und Bestimmung mittels GC-(EI)MS im MID-Mode

4.2 Analyse ausgewählter Arzneimittelwirkstoffe mittels LC/MS/MS

4.2.1 Saure Probenvorbereitung und Analyse von Sulfamethoxazol, Carbamazepin, Ibuprofen; Phenazon, Coffein

- 1) Anreicherung der Analyten mittels Festphasenextraktion (CH-Festphase) im sauren Milieu nach Zugabe von Surrogates
- 2) Elution mit Dichlormethan, Ethylacetat und Methanol
- 3) Lösungsmittelwechsel zu Acetonitril / Wasser
- 4) Bestimmung mittels Hochleistungsflüssigchromatographie und Massendetektion (LC/MS) über Auswertung von 1 MRM Übergang

4.2.2 Neutrale Probenvorbereitung und Analyse von Carbamazepin, Coffein, Ibuprofen, Trimethoprim, Phenazon, Penicillin V, Penicillin G, Verapamil, Erythromycin

- 1) Anreicherung der Analyten mittels Festphasenextraktion (CH-Festphase) im basischen bis neutralen Milieu nach Zugabe von Surrogates
- 2) Elution mit Dichlormethan, Ethylacetat und Methanol
- 3) Lösungsmittelwechsel zu Acetonitril / Wasser
- 4) Bestimmung mit der Hochleistungsflüssigchromatographie und Massendetektion (LC/MS) über Auswertung von 1 MRM Übergang

Bei den Substanzen Carbamazepin, Ibuprofen, Phenazon und Coffein wurden Mittelwerte nach Plausibilitätsüberprüfung gebildet.

5. UNTERSUCHUNGSERGEBNISSE

Die einzelnen Analysenergebnisse sind in den nachfolgenden Tabellen zusammengefaßt. Zu weiteren Vergleichszwecken werden, wie in der Fachliteratur üblich, für die Gehalte der untersuchten Parameter die Medianwerte und Mittelwerte angegeben. Bei dieser Berechnung wurden alle ermittelten Werte der 11 kommunalen Kläranlagen berücksichtigt (ohne Ausreißertest).

Die Mittelwert- und Medianberechnung erfolgte auf zwei verschiedene Arten, vorausgesetzt in einer Messreihe lagen mindestens die Hälfte der Messwerte über der Bestimmungsgrenze.

- Zur Mittelwert- und Medianbestimmung wurden alle Ergebnisse der Messreihe herangezogen. Für Werte, die zwischen der Bestimmungs- und Nachweisgrenze lagen, und daher nicht quantifizierbar waren, wurde die Nachweisgrenze eingesetzt. Substanzen, die nicht nachweisbar waren (n.n.), wurden bei der Berechnung gleich null gesetzt.
- Es wurden zur Mittelwert- und Medianbestimmung nur quantifizierbare Ergebnisse (>BG) dieser Messreihe herangezogen. Diese Mittelwerte und Mediane sind in den Tabellen mit * gekennzeichnet.

Bei der Darstellung der Kenngrößen Mittelwert und Median in den nachfolgenden Tabellen wurde neben der Angabe des Resultates in Klammer das Verhältnis der Anzahl jener Proben, die zur Berechnung herangezogen wurden, zur Gesamtanzahl der untersuchten Proben angegeben.

(x/n):

- x: Anzahl jener Proben, die zur Berechnung herangezogen wurden
- n: Gesamtanzahl der untersuchten Proben

Die Nachweisgrenzen (NG) und Bestimmungsgrenzen (BG) der einzelnen Analyte sind aus nachfolgender Tabelle ersichtlich.

Tabelle 1: In diesem Projekt festgesetzte Nachweis- und Bestimmungsgrenzen (NG und BG) der untersuchten Parameter in Abwasserproben.

	NG	BG
PARAMETER	(ng/L)	(ng/L)
Analgetika		
Diclofenac	10-30°	20-60°
Ibuprofen	25	50
Naproxen	10-30°	20-60°
Phenazon	25	50
Lipidsenker		
Clofibrinsäure	10-30°	20-60°
Bezafibrat	10-30°	20-60°
Fenofibrat	10-30°	20-60°
Psychostimulans		
Coffein	25	50
Antiepileptikum		
Carbamazepin	25	50
Antihypertonikum		
Verapamil	25	50
Antibiotika		
Penicillin V	25	50
Penicillin G	25	50
Sulfamethoxazol	25	50
Erythromycin	25	50
Trimethoprim	25	50

[°] NG und BG abhängig von der eingesetzten Probenmenge

In den nachfolgenden Tabellen sind die Ergebnisse zusammengefasst. Hierzu ist anzumerken, dass

> die Kläranlage 1 eine industrielle Kläranlage darstellt, mit * gekennzeichnete Mittelwerte und Mediane nur aus Ergebnissen > BG berechnet wurden.

Umweltbundesamt/Federal Environment Agency - Austria

6. ERGEBNISSE IN TABELLENFORM

Tabelle 2: Zu- und Ablauf von Kläranlagen (alle Angaben in ng /L)

Parameter	W9802 1083 Zulauf	W9802 1084 Ablauf	W9802 1087 Zulauf	W9802 1088 Ablauf	W9803 1309 Zulauf	W9803 1310 Ablauf	W9803 1536 Zulauf	W9803 1537 Ablauf				
	Kläraı	nlage 1	Klärar	nlage 2	Kläraı	nlage 3	Kläranlage 4					
Analgetika												
Diclofenac	n.n.	n.n.	430	370	130	270	1.330	1.710				
Ibuprofen	n.n.	n.n.	623	411	264	68	3.470	1.430				
Naproxen	n.n.	n.n.	420	400	880	800	1.470	1.960				
Phenazon	n.n.	n.n.	222	195	110	54,0	243	226				
Lipidsenker												
Clofibrinsäure	n.n.	n.n.	n.n.	n.n.	<40	83	420	430				
Bezafibrat	n.n.	n.n.	1.810	1.490	2.550	3.240	5.560	6.110				
Fenofibrat	<40	n.n.	81	n.n.	n.n.	n.n.	n.n.	n.n.				
Psychostimulans												
Coffein	92,1	82,5	31.000	254	38.600	2.680	49.700	20.000				

Parameter	W9802 1083 Zulauf	W9802 1084 Ablauf	W9802 1087 Zulauf	W9802 1088 Ablauf	W9803 1309 Zulauf	W9803 1310 Ablauf	W9803 1536 Zulauf	W9803 1537 Ablauf				
	Kläraı	nlage 1	Kläraı	nlage 2	Klära	nlage 3	Kläranlage 4					
Antiepileptikum												
Carbamazepin	<50	<50	914	733	504	515	756	755				
Antihypertonikum												
Verapamil	n.n.	n.n.	<50	<50	<50	n.n.	<50	<50				
Antibiotika												
Penicillin V	n.n.											
Penicillin G	n.n.											
Sulfamethoxazol	n.n.	<50	129	173	61	<50	232	234				
Erythromycin	n.n.	n.n.	629	394	441	3.020	421	645				
Trimethropim	n.n.	n.n.	196	167	145	180	143	302				

Umweltbundesamt/Federal Environment Agency - Austria

Fortsetzung der Tabelle 2: Zu- und Ablauf von Kläranlagen (alle Angaben in ng/L)

Parameter	W9803	W9803	W9803	W9803	W9804	W9804	W9804	W9804				
	1540	1541	1545	1546	_1621	1622	1957	1958				
	Zulauf	Ablauf	Zulauf	Ablauf	Zulauf	Ablauf	Zulauf	Ablauf				
	Kläraı	nlage 5	Klärar	nlage 6	Kläraı	nlage 7	Kläranlage 8					
Analgetika												
Diclofenac	250	440	<40	79	370	n.n.	1.380	840				
Ibuprofen	314	100	400	254	351	<50	2.100	410				
Naproxen	810	500	2.030	920	440	n.n.	1.440	730				
Phenazon	297	189	83	148	138	54	120	102				
Lipidsenker												
Clofibrinsäure	130	150	<40	47	130	<40	130	81				
Bezafibrat	2.260	1.840	1.200	510	2.580	76	3.960	2.780				
Fenofibrat	<60	n.n.	n.n.	n.n.	n.n.	n.n.	370	n.n.				
Psychostimulans												
Coffein	58.300	2.740	22.600	791	24.900	102	49.100	697				

Arzneimittelwirkstoffe im Zu- und Ablauf von Kläranlagen

Fortsetzung der Tabelle 2: Zu- und Ablauf von Kläranlagen (alle Angaben in ng/L)

Parameter	W9803 1540 Zulauf	W9803 1541 Ablauf	W9803 1545 Zulauf	W9803 1546 Ablauf	W9804 1621 Zulauf	W9804 1622 Ablauf	W9804 1957 Zulauf	W9804 1958 Ablauf				
	Klära	nlage 5	Klärar	nlage 6	Kläraı	nlage 7	Klärar	nlage 8				
Antiepileptikum												
Carbamazepin	888	866	220	282	539	542	346	674				
Antihypertonikum												
Verapamil	68,1	<50	<50	51,9	n.n.	n.n.	61,7	<50				
Antibiotika												
Penicillin V	n.n.											
Penicillin G	n.n.											
Sulfamethoxazol	157	202	76,5	76,3	<50	<50	71,1	155				
Erythromycin	487	415	367	321	442	347	466	435				
Trimethropim	370	177	118	117	111	<50	144	214				

Fortsetzung der Tabelle 2: Zu- und Ablauf von Kläranlagen (alle Angaben in ng/L)

Parameter	W9804 1973 Zulauf	W9804 1974 Ablauf	W9805 2020 Zulauf	W9805 2021 Ablauf	W9805 2031 Zulauf	W9805 2032 Ablauf	W9805 2154 Zulauf	W9805 2155 Ablauf				
	Klära	ınlage 9	Kläranl	age 10	Kläranl	age 11	Kläranlage 12					
Analgetika												
Diclofenac	49	540	850	330	46	250	<40	280				
Ibuprofen	215	242	273	241	166	145	244	126				
Naproxen	330	250	560	260	200	150	1.680	470				
Phenazon	374	260	285	157	69,1	<50	76,3	64,1				
Lipidsenker												
Clofibrinsäure	<40	n.n.	n.n.	<20	<40	<60	<40	<40				
Bezafibrat	620	910	1.780	590	620	130	1.200	470				
Fenofibrat	81	<40	<40	45	n.n.	n.n.	n.n.	n.n.				
Psychostimulans												
Coffein	45.500	9.950	42.700	167	20.800	66,3	22.200	213				

Fortsetzung der Tabelle 2: Zu- und Ablauf von Kläranlagen (alle Angaben in ng/L)

Parameter	W9804 1973 Zulauf	W9804 1974 Ablauf	W9805 2020 Zulauf	W9805 2021 Ablauf	W9805 2031 Zulauf	W9805 2032 Ablauf	W9805 2154 Zulauf	W9805 2155 Ablauf				
	Klära	nlage 9	Klärani	lage 10	Kläran	lage 11	Kläranlage 12					
Antiepileptikum												
Carbamazepin	820	562	823	1.110	346	428	212	439				
Antihypertonikum	Antihypertonikum											
Verapamil	<50	n.n.	<50	65,9	56,1	n.n.	n.n.	<50				
Antibiotika												
Penicillin V	n.n.											
Penicillin G	n.n.											
Sulfamethoxazol	n.n.	n.n.	<50	99,5	<50	<50	61,9	<50				
Erythromycin	314	240	200	452	289	89,3	106	232				
Trimethropim	173	121	184	228	150	58,7	172	104				

Umweltbundesamt/Federal Environment Agency - Austria

Tabelle 3: Kenngrößen für Zu- und Ablauf der 11 kommunalen Kläranlagen

Parameter		der Pro- ahme	Dim.	Proben >BG	Min.	Max.	MW (x/n)	Median (x/n)	MW* (x/n)	Median* (x/n)
Analgetika										
Diclofenac	A\A/	KA-Zulauf	ng/L	9	<40	1.380	443 _(11/11)	250 _(11/11)	537 _(9/11)	370 _(9/11)
Diciolellac F	AW	KA-Ablauf	ng/L	10	n.n.	1.710	464 _(11/11)	330 _(11/11)	511 _(10/11)	350 _(10/11)
Ibuprofen AW	A \ A \	KA-Zulauf	ng/L	11	166	3.470	765 _(11/11)	314 _(11/11)	765 _{(11/11})	314 _(11/11)
lbuprofen	AVV	KA-Ablauf	ng/L	10	<50	1.430	314(11/11)	241(11/11)	342(10/11)	242(10/11)
Managan	AW	KA-Zulauf	ng/L	11	200	2.030	933 _(11/11)	810 _(11/11)	933 _(11/11)	810 _(11/11)
Naproxen	AVV	KA-Ablauf	ng/L	10	n.n.	1.960	585 _(11/11)	470 _(11/11)	644 _(10/11)	485 _(10/11)
Division	A \ A \	KA-Zulauf	ng/L	11	69	374	183 _{(11/11})	138 _(11/11)	183 _(11/11)	138 _(11/11)
Phenazon	AW	KA-Ablauf	ng/L	10	<50	260	134 _(11/11)	148(11/11)	145 _(10/11)	153 _(10/11)
Lipidsenker										
Olofibuino #		KA-Zulauf	ng/L	5	n.n.	420	90 _(11/11)	20 _(11/11)	178 _(5/11)	130 _(5/11)
Clofibrinsäure AW	AW	KA-Ablauf	ng/L	6	n.n.	430	86 _(11/11)	47 _(11/11)	145 _(6/11)	82 _(6/11)
Bezafibrat	AW	KA-Zulauf	ng/L	11	620	5.560	2.195 _(11/11)	1.810(11/11)	2.195(11/11)	1.810(11/11)
Dezamural	AVV	KA-Ablauf	ng/L	11	76	6.110	1.650(11/11)	910 _(11/11)	1.650(11/11)	910 _(11/11)

20

Fortsetzung der Tabelle 3: Kenngrößen für Zu- und Ablauf der 11 kommunalen Kläranlagen

Parameter	Ort	der Pro-	Dim.	Proben	Min.	Max.	MW	Median	MW*	Median*
	bena	ahme		>BG			(x/n)	(x/n)	(x/n)	(x/n)
Fenofibrat	AW	KA-Zulauf	ng/L	3	n.n.	370	-	-	177 _(3/11)	81 _(3/11)
		KA-Ablauf	ng/L	1	n.n.	45	-	-	45 _(1/11)	45 _(1/11)
Psychostimulan	s									
Coffein	AW	KA-Zulauf	ng/L	11	20.800	58.300	36.800 _(11/11)	38.600 _(11/11)	36.800 _(11/11)	38.600(11/11)
		KA-Ablauf	ng/L	11	66	20.000	3.430 _(11/11)	697 _(11/11)	3.430(11/11)	697 _(11/11)
Antiepileptikum										
Carbamazepin	AW	KA-Zulauf	ng/L	11	212	914	579 _(11/11)	539 _(11/11)	579(11/11)	539(11/11)
·		KA-Ablauf	ng/L	11	282	1.110	627 _(11/11)	562 _(11/11)	627 _(11/11)	562 _(11/11)
Antihypertoniku	m									
Verapamil	AW	KA-Zulauf	ng/L	3	n.n.	68	-	-	62 _(3/11)	62 _(3/11)
•		KA-Ablauf	ng/L	2	n.n.	66	-	-	59 _(2/11)	59 _(2/11)

Umweltbundesamt/Federal Environment Agency - Austria

Fortsetzung der Tabelle 3: Kenngrößen für Zu- und Ablauf der 11 kommunalen Kläranlagen

Parameter		der Pro- ahme	Dim.	Proben >BG	Min.	Max.	MW (x/n)	Median (x/n)	MW* (x/n)	Median* (x/n)
Antibiotika										
Penicillin V	AW	KA-Zulauf	ng/L	0	n.n.	n.n.	-	-	-	-
		KA-Ablauf	ng/L	0	n.n.	n.n.	-	-	-	-
Penicillin G	AW	KA-Zulauf	ng/L	0	n.n.	n.n.	-	-	-	-
		KA-Ablauf	ng/L	0	n.n.	n.n.	-	-	-	-
Sulfamethoxazol	AW	KA-Zulauf	ng/L	7	<50	232	86 _(10/10)	67 _(10/10)	113 _(7/10)	77 _(7/10)
		KA-Ablauf	ng/L	6	n.n.	234	94 _(11/11)	76 _(11/11)	157 _(6/11)	164 _(6/11)
Erythromycin	AW	KA-Zulauf	ng/L	11	106	629	378 _(11/11)	421 _(11/11)	378 _(11/11)	421 _(11/11)
		KA-Ablauf	ng/L	11	89	3.020	599 _(11/11)	394 _(11/11)	599(11/11)	394 _(11/11)
Trimethoprim	AW	KA-Zulauf	ng/L	11	111	370	173 _(11/11)	150 _(11/11)	173 _(11/11)	150 _(11/11)
•		KA-Ablauf	ng/L	10	<50	302	154 _(11/11)	167 _(11/11)	167 _(10/11)	172 _(10/11)

7. LITERATUR

- AUSTRIA-CODEX FACHINFORMATION (2001/2002): Österreichische Apotheker-Verlagsges., Wien.
- DAUGHTON, C. G. & TERNES, T. A. (1999): Pharmaceuticals and personal care products in the environment: agents of subtle change. Environ. Health Perspectives Vol 107, Supplement 6: 907-938.
- HIRSCH, R., TERNES, T.A., HABERER, K., KRATZ, K. L. (1999): Occurrence of antibiotics in the aquatic environment. The Science of the Total Environment 225: 109-118.
- HOHENBLUM, P., SATTELBERGER, R., SCHARF, S. (2000): Abwasser- und Klärschlammuntersuchungen in der Pilotkläranlage Entsorgungsbetriebe Simmering (EbS). Umweltbundesamt Wien, Monographie 121.
- IMS Institut für medizinische Statistik (1998): Sonderstudie für das Umweltbundesamt. Arzneimittelsubstanzen in Österreich. Wien.
- MUTSCHLER, E. & SCHÄFER-KORTING, M. (1997): Arzneimittelwirkungen Lehrbuch der Pharmakologie und Toxikologie. Wiss. Verl.-ges. Stuttgart.
- ÖSTERREICHISCHE APOTHEKERKAMMER (2001): Die österreichische Apotheke in Zahlen Ausgabe 2001. Wien.
- PRÖSCH, J. & PUCHERT, W. (1998): Coffein: Vorkommen in Fließgewässern Mecklenburg-Vorpommerns. Vom Wasser, 91: 207-214.
- SATTELBERGER, R. (1999): Arzneimittelrückstände in der Umwelt. Bestandsaufnahme und Problem-darstellung; Umweltbundesamt Wien, Report 162.
- SCHARF S., SATTELBERGER R., LORBEER, G. (1999): Hormonell wirksame Substanzen im Zu- und Ablauf von Kläranlagen. Umweltbundesamt Wien, Datenbericht UBA-BE-151.
- STUMPF, M., TERNES, T:, HABERER, K., BAUMANN, W: (1998): Isolierung von Ibuprofen-Metaboliten und deren Bedeutung als Kontaminanten der aquatischen Umwelt. Vom Wasser, 91: 291-303.
- TERNES, T. (1998): Occurrence of drugs in German sewage treatment plants and rivers. Water research Vol. 32, No 11: 3245 3260.
- TERNES, T.A.; HIRSCH, R.; MÜLLER, J.; HABERER, K. (1998): Methods for the determination of neutral drugs as well as betablockers and ß2-sympathomimetics in aqueous matrices using GC/MS and LC/MS/MS. Fres. J. Anal. Chem. 362, 329-340.

8. VERZEICHNISSE

8.1. Abkürzungsverzeichnis

BG Bestimmungsgrenze
BGBI. Bundesgesetzblatt
Max Maximum
Min Minimum

MW Mittelwert

NG Nachweisgrenze

n.a. nicht auswertbar

n.n. nicht nachweisbar

n nicht berechenbar n Anzahl der Proben

8.2 Tabellen- / Abbildungsverzeichnis

		Seite
Abb. 1:	Strukturformeln untersuchter Arzneimittelwirkstoffe	5-8
Tab. 1:	Festgesetzte Nachweis- und Bestimmungsgrenzen (NG und BG) der untersuchten Parameter in Abwasser- Proben	12
Tab. 2:	Ergebnisse - Zu- und Ablauf von Kläranlagen	13
Tab. 3:	Kenngrößen für Zu- und Ablauf der 11 komm. Kläranlagen	19

ANHANG 1 / KLÄRANLAGENBEZOGENE KENNDATEN

Nähere Angaben (Jahresmittelwerte 1998) zur Kläranlage 1:

•	Kenngrößen der Anlage (bezogen auf BSB ₅) Bemessungsgröße der Anlage Industrieanteil	~30.000 ~100	EW %
•	Gemessene Zulaufwassermengen Q im Jahresmittel	~13.000	m³/d
•	Schlammanfall Gesamtmenge anfallender Schlämme (PS + ÜS) Durchschnittlicher Trockensubstanzgehalt	~330 <10	m ³ /d kg/m ³
•	Entwässerter Schlamm	~2.000 ~30 ~2.600	kg/m³ TS kg/m³ oTS t TS/a

Nähere Angaben (Jahresmittelwerte) zur Kläranlage 2:

•	Kohlenstoffentfernung.	Nitrifikation	Denitrifikation	Phosphorentfernung
•	Noniensionenilenium.	millinkalion.	Denininkanon.	. FIIOSDIIOLEHIIEHIUNG

•	Kenngrößen der Anlage (bezogen auf BSB ₅) Bemessungsgröße der Anlage Industrieanteil	≥300.000 ~60	EW %
•	Gemessene Zulaufwassermengen Q im Jahresmittel Mittelwert im Monat vor der Probenahme	~85.000 ~66.000	m ³ /d m ³ /d
•	Schlammanfall Gesamtmenge anfallender Schlämme (PS + ÜS) Durchschnittlicher Trockensubstanzgehalt	~2.400 <10	m ³ /d kg/m ³
•	Schlammstabilisierung - Anaerob mesophil (~33-38°C)		
•	Entwässerter Schlamm	~220 ~130 ~3.800	kg/m³ TS kg/m³ oTS t TS/a

Nähere Angaben (Jahresmittelwerte) zur Kläranlage 3:

• Kohlenstoffentfernung, Nitrifikation

•	Kenngrößen der Anlage (bezogen auf BSB ₅) Bemessungsgröße der Anlage	~110.000	EW
•	Gemessene Zulaufwassermengen Q im Jahresmittel	~15.000	m³/d
•	Schlammanfall Gesamtmenge anfallender Schlämme (PS + ÜS)	~1.000	m³/d
•	Schlammstabilisierung - Anaerob mesophil (~33-38°C)		
•	Entwässerter Schlamm	~3.000 (~20	m³ %TS)

Kläranlage 4

Es sind keine näheren Angaben zu Kläranlage 4 bekannt, da vom Betreiber keine zusätzlichen Informationen zur Verfügung gestellt wurden.

Nähere Angaben (Jahresmittelwerte) zur Kläranlage 5:

•	Kohlenstoffentfernung, Nitrifikation		
•	Kenngrößen der Anlage (bezogen auf BSB ₅) Bemessungsgröße der Anlage Industrieanteil	≥ 300.000 ~50	EW %
•	Gemessene Zulaufwassermengen Q im Jahresmittel	~34.000	m³/d
•	Schlammanfall Gesamtmenge anfallender Schlämme (PS + ÜS) Durchschnittlicher Trockensubstanzgehalt	~180 ~40	m ³ /d kg/m ³
•	Schlammstabilisierung - Anaerob mesophil (~33-38°C)		
•	Entwässerter Schlamm	~230 ~110 ~2.700	kg/m³ TS kg/m³ oTS t TS/a

Nähere Angaben (Jahresmittelwerte) zur Kläranlage 6:

Kohlenstoffentfernung, Nitrifikation, Denitrifikation, Phosphorentfernung

•	Kenngrößen der Anlage (bezogen auf BSB₅) Bemessungsgröße der Anlage Industrieanteil	~170.000 ~70	EW %
•	Gemessene Zulaufwassermengen Q im Jahresmittel	~23.000	m³/d
•	Schlammanfall Gesamtmenge anfallender Schlämme (PS + ÜS) Durchschnittlicher Trockensubstanzgehalt	~90 ~80	m ³ /d kg/m ³
•	Schlammstabilisierung - Anaerob mesophil (~33-38°C)		
•	Entwässerter Schlamm	~450 ~130 ~3.300	kg/m³ TS kg/m³oTS TS/a

Nähere Angaben (Jahresmittelwerte) zur Kläranlage 7:

• Kohlenstoffentfernung, Nitrifikation, Denitrifikation, Phosphorentfernung

•	Kenngrößen der Anlage (bezogen auf BSB ₅) Bemessungsgröße der Anlage Industrieanteil	~120.000 ~70	
•	Gemessene Zulaufwassermengen Q im Jahresmittel Mittelwert im Monat vor der Probenahme	~19.000 ~19.000	m ³ /d m ³ /d
•	Schlammanfall Gesamtmenge anfallender Schlämme (PS + ÜS)	~120	m ³ /d
•	Schlammstabilisierung - Anaerob mesophil (~33-38°C)		
•	Entwässerter Schlamm (inkl. Konditionierungsmittel)	~1.600	t TS/a

Nähere Angaben (Jahresmittelwerte) zur Kläranlage 8:

•	Kohlenstoffentfernung,	Nitrifikation
---	------------------------	---------------

•	Kenngrößen der Anlage (bezogen auf BSB ₅) Bemessungsgröße der Anlage Industrieanteil	~100.000 ~70		
•	Gemessene Zulaufwassermengen Q im Jahresmittel Mittelwert im Monat vor der Probenahme	~10.000 ~9.000	m ³ /d m ³ /d	
•	Schlammanfall Gesamtmenge anfallender Schlämme (PS + ÜS) Durchschnittlicher Trockensubstanzgehalt	~350 ~30	m³/d kg/m³	
•	Schlammstabilisierung - Anaerob mesophil (~33-38°C)			
•	Entwässerter Schlamm	~260 ~970	kg/m³ t TS/a	TS

Nähere Angaben (Jahresmittelwerte) zur Kläranlage 9:

Kohlenstoffentfernung

	. to monotonic on unig		
•	Kenngrößen der Anlage (bezogen auf BSB ₅) Bemessungsgröße der Anlage Industrieanteil	≥ 300.000 ~50	
•	Gemessene Zulaufwassermengen Q im Jahresmittel	~170.000	m³/d
•	Schlammanfall Gesamtmenge anfallender Schlämme (PS + ÜS) Durchschnittlicher Trockensubstanzgehalt	~920 ~50	m ³ /d kg/m ³
•	Schlammstabilisierung - Anaerob mesophil (~33-38°C)		
•	Entwässerter Schlamm	~360 ~40	kg/m³ TS t TS/d

Nähere Angaben (Jahresmittelwerte) zur Kläranlage 10:

• Kohlenstoffentfernung, Nitrifikation, Denitrifikation, Phosphorentfernung

•	Kenngrößen der Anlage (bezogen auf BSB ₅) Bemessungsgröße der Anlage Industrieanteil	~140.000 ~60	
•	Gemessene Zulaufwassermengen Mittelwert im Monat vor der Probenahme	~21.000	m ³ /d
•	Schlammanfall Gesamtmenge anfallender Schlämme (PS + ÜS) Durchschnittlicher Trockensubstanzgehalt	~220 ~40	m ³ /d kg/m ³
•	Entwässerter Schlamm	~410 ~2.500	kg/m³ TS t TS/a

Nähere Angaben (Jahresmittelwerte) zur Kläranlage 11:

Kohlenstoffentfernung, Nitrifikation, Denitrifikation, Phosphorentfernung

•	Kenngrößen der Anlage (bezogen auf BSB ₅) Bemessungsgröße der Anlage Industrieanteil	~100.000 ~60	
•	Gemessene Zulaufwassermengen Q im Jahresmittel	~19.000	m³/d
•	Schlammanfall Gesamtmenge anfallender Schlämme (PS + ÜS) Durchschnittlicher Trockensubstanzgehalt	~80 <10	m ³ /d kg/m ³
•	Entwässerter Schlamm	~20 ~430	kg/m³ TS t TS/a

Nähere Angaben (Jahresmittelwerte) zur Kläranlage 12:

• Kohlenstoffentfernung, Nitrifikation, Denitrifikation, Phosphorentfernung

•	Kenngrößen der Anlage (bezogen auf BSB ₅) Bemessungsgröße der Anlage Industrieanteil	~120.000 ~70	
•	Gemessene Zulaufwassermengen Q im Jahresmittel	~14.000	m³/d
•	Schlammanfall Gesamtmenge anfallender Schlämme (PS + ÜS) Durchschnittlicher Trockensubstanzgehalt	~70 <40	m ³ /d kg/m ³
•	Schlammstabilisierung - Anaerob mesophil (~33-38°C)		
•	Entwässerter Schlamm	~1000	t TS/a